Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Bull World Health Organ ; 102(4): 288-295, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38562197

RESUMEN

The World Health Organization (WHO) aims to reduce new leprosy cases by 70% by 2030, necessitating advancements in leprosy diagnostics. Here we discuss the development of two WHO's target product profiles for such diagnostics. These profiles define criteria for product use, design, performance, configuration and distribution, with a focus on accessibility and affordability. The first target product profile outlines requirements for tests to confirm diagnosis of leprosy in individuals with clinical signs and symptoms, to guide multidrug treatment initiation. The second target product profile outlines requirements for tests to detect Mycobacterium leprae or M. lepromatosis infection among asymptomatic contacts of leprosy patients, aiding prophylactic interventions and prevention. Statistical modelling was used to assess sensitivity and specificity requirements for these diagnostic tests. The paper highlights challenges in achieving high specificity, given the varying endemicity of M. leprae, and identifying target analytes with robust performance across leprosy phenotypes. We conclude that diagnostics with appropriate product design and performance characteristics are crucial for early detection and preventive intervention, advocating for the transition from leprosy management to prevention.


L'Organisation mondiale de la Santé (OMS) vise à réduire le nombre de nouveaux cas de lèpre de 70% d'ici 2030, ce qui nécessite un meilleur diagnostic de la maladie. Dans le présent document, nous évoquons le développement de deux profils de produit cible établis par l'OMS à cette fin. Ces profils définissent des critères en matière d'utilisation, de conception, de performances, de configuration et de distribution du produit, en accordant une attention particulière à l'accessibilité et à l'abordabilité. Le premier profil de produit cible décrit les exigences pour les tests servant à confirmer le diagnostic de la lèpre chez les individus qui présentent des signes cliniques et des symptômes, afin d'orienter l'instauration d'un traitement à base de plusieurs médicaments. Le second profil de produit cible décrit les exigences pour les tests servant à détecter une infection à Mycobacterium leprae ou M. lepromatosis parmi les contacts asymptomatiques de patients lépreux, ce qui contribue à l'adoption de mesures prophylactiques et à la prévention. Nous avons eu recours à une modélisation statistique pour évaluer les exigences de sensibilité et de spécificité de ces tests diagnostiques. Cet article met en évidence les obstacles à l'atteinte d'un niveau élevé de spécificité en raison de l'endémicité variable de M. leprae, et à l'identification d'analytes cibles offrant de bons résultats chez les phénotypes lépreux. Nous concluons qu'un diagnostic reposant sur des caractéristiques de performance et de conception appropriées est essentiel pour détecter rapidement la maladie et intervenir en amont, et nous plaidons pour une prévention plutôt qu'une gestion de la lèpre.


La Organización Mundial de la Salud (OMS) pretende reducir los nuevos casos de lepra en un 70% para 2030, lo que requiere avances en el diagnóstico de la lepra. Aquí se analiza el desarrollo de dos perfiles de productos objetivo de la OMS para este tipo de diagnósticos. Estos perfiles definen los criterios de uso, diseño, rendimiento, configuración y distribución de los productos, centrándose en su accesibilidad y asequibilidad. El primer perfil de producto objetivo describe los requisitos de las pruebas para confirmar el diagnóstico de la lepra en personas con signos y síntomas clínicos, con el fin de orientar el inicio del tratamiento con múltiples fármacos. El segundo perfil de producto objetivo describe los requisitos de las pruebas para detectar la infección por Mycobacterium leprae o M. lepromatosis entre los contactos asintomáticos de los pacientes con lepra, para facilitar las intervenciones profilácticas y la prevención. Se utilizaron modelos estadísticos para evaluar los requisitos de sensibilidad y especificidad de estas pruebas diagnósticas. El artículo destaca las dificultades para lograr una alta especificidad, dada la diferente endemicidad de M. leprae, y para identificar analitos diana con un rendimiento sólido en todos los fenotipos de lepra. Concluimos que los diagnósticos con un diseño de producto y unas características de rendimiento adecuados son fundamentales para la detección precoz y la intervención preventiva, lo que favorece la transición del manejo de la lepra a la prevención.


Asunto(s)
Lepra , Humanos , Lepra/diagnóstico , Lepra/tratamiento farmacológico , Mycobacterium leprae/genética , Sensibilidad y Especificidad , Modelos Estadísticos , Diagnóstico Precoz
2.
Front Microbiol ; 14: 1113318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051521

RESUMEN

Background: Mycobacterium leprae transcriptomic and human host immune gene expression signatures that demonstrate a plausible association with type I (T1R) and type II reactions (T2R) aid in early diagnosis, prevention of nerve damage and consequent demyelinating neuropathy in leprosy. The aim of the study is to identify M. leprae and host-associated gene-expression signatures that are associated with reactional states in leprosy. Methods: The differentially expressed genes from the whole transcriptome of M. leprae were determined using genome-wide hybridization arrays with RNA extracted from skin biopsies of 20 T1R, 20 T2R and 20 non reactional controls (NR). Additionally, human immune gene-expressions were profiled using RT2-PCR profiler arrays and real-time qPCRs. Results: The RNA quality was optimal in 16 NR, 18 T1R and 19 T2R samples. Whole transcriptome expression array of these samples revealed significant upregulation of the genes that encode integral and intrinsic membrane proteins, hydrolases and oxidoreductases. In T1R lesional skin biopsy specimens, the top 10 significantly upregulated genes are ML2064, ML1271, ML1960, ML1220, ML2498, ML1996, ML2388, ML0429, ML2030 and ML0224 in comparison to NR. In T2R, genes ML2498, ML1526, ML0394, ML1960, ML2388, ML0429, ML0281, ML1847, ML1618 and ML1271 were significantly upregulated. We noted ML2664 was significantly upregulated in T1R and repressed in T2R. Conversely, we have not noted any genes upregulated in T2R and repressed in T1R. In both T1R and T2R, ML2388 was significantly upregulated. This gene encodes a probable membrane protein and epitope prediction using Bepipred-2.0 revealed a distinct B-cell epitope. Overexpression of ML2388 was noted consistently across the reaction samples. From the host immune gene expression profiles, genes for CXCL9, CXCL10, CXCL2, CD40LG, IL17A and CXCL11 were upregulated in T1R when compared to the NR. In T2R, CXCL10, CXCL11, CXCL9, CXCL2 and CD40LG were upregulated when compared to the NR group. Conclusion: A gene set signature involving bacterial genes ML2388, ML2664, and host immune genes CXCL10 and IL-17A can be transcriptomic markers for reactional states in leprosy.

3.
PLoS Negl Trop Dis ; 16(11): e0010908, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36331971

RESUMEN

Buruli ulcer is one of the 20 neglected tropical diseases in the world. This necrotizing hypodermitis is a chronic debilitating disease caused by an environmental Mycobacterium ulcerans. At least 33 countries with tropical, subtropical and temperate climates have reported Buruli ulcer in African countries, South America and Western Pacific regions. Majority of cases are spread across West and Central Africa. The mode of transmission is unclear, hindering the implementation of adequate prevention for the population. Currently, early diagnosis and treatment are crucial to minimizing morbidity, costs and preventing long-term disability. Biological confirmation of clinical diagnosis of Buruli ulcer is essential before starting chemotherapy. Indeed, differential diagnosis are numerous and Buruli ulcer has varying clinical presentations. Up to now, the gold standard biological confirmation is the quantitative PCR, targeting the insertion sequence IS2404 of M. ulcerans performed on cutaneous samples. Due to the low PCR confirmation rate in endemic African countries (under 30% in 2018) for numerous identified reasons within this article, 11 laboratories decided to combine their efforts to create the network "BU-LABNET" in 2019. The first step of the network was to harmonize the procedures and ship specific reagents to each laboratory. With this system in place, implementation of these procedures for testing and follow-up was easy and the laboratories were able to carry out their first quality control with a very high success rate. It is now time to integrate other neglected tropical diseases to this platform, such as yaws or leprosy.


Asunto(s)
Úlcera de Buruli , Mycobacterium ulcerans , Humanos , Úlcera de Buruli/diagnóstico , Úlcera de Buruli/epidemiología , Úlcera de Buruli/microbiología , Laboratorios , Mycobacterium ulcerans/genética , Enfermedades Desatendidas/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Organización Mundial de la Salud
4.
Front Mol Biosci ; 8: 663301, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026836

RESUMEN

Leprosy, caused by Mycobacterium leprae (M. leprae), is treated with a multidrug regimen comprising Dapsone, Rifampicin, and Clofazimine. These drugs exhibit bacteriostatic, bactericidal and anti-inflammatory properties, respectively, and control the dissemination of infection in the host. However, the current treatment is not cost-effective, does not favor patient compliance due to its long duration (12 months) and does not protect against the incumbent nerve damage, which is a severe leprosy complication. The chronic infectious peripheral neuropathy associated with the disease is primarily due to the bacterial components infiltrating the Schwann cells that protect neuronal axons, thereby inducing a demyelinating phenotype. There is a need to discover novel/repurposed drugs that can act as short duration and effective alternatives to the existing treatment regimens, preventing nerve damage and consequent disability associated with the disease. Mycobacterium leprae is an obligate pathogen resulting in experimental intractability to cultivate the bacillus in vitro and limiting drug discovery efforts to repositioning screens in mouse footpad models. The dearth of knowledge related to structural proteomics of M. leprae, coupled with emerging antimicrobial resistance to all the three drugs in the multidrug therapy, poses a need for concerted novel drug discovery efforts. A comprehensive understanding of the proteomic landscape of M. leprae is indispensable to unravel druggable targets that are essential for bacterial survival and predilection of human neuronal Schwann cells. Of the 1,614 protein-coding genes in the genome of M. leprae, only 17 protein structures are available in the Protein Data Bank. In this review, we discussed efforts made to model the proteome of M. leprae using a suite of software for protein modeling that has been developed in the Blundell laboratory. Precise template selection by employing sequence-structure homology recognition software, multi-template modeling of the monomeric models and accurate quality assessment are the hallmarks of the modeling process. Tools that map interfaces and enable building of homo-oligomers are discussed in the context of interface stability. Other software is described to determine the druggable proteome by using information related to the chokepoint analysis of the metabolic pathways, gene essentiality, homology to human proteins, functional sites, druggable pockets and fragment hotspot maps.

5.
Drug Discov Today ; 26(7): 1569-1573, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33798649

RESUMEN

Hansen's disease (HD), or leprosy, continues to be endemic in many parts of the world. Although multidrug therapy (MDT) is successful in curing a large number of patients, some of them abandon it because it is a long-term treatment. Therefore, identification of new drug targets in Mycobacterium leprae is considered of high importance. Here, we introduce an overview of in silico and in vitro studies that might be of help in this endeavor. The essentiality of M. leprae proteins is reviewed with discussion of flux balance analysis, gene expression, and knockout articles. Finally, druggability techniques are proposed for the validation of new M. leprae protein targets (see Fig. 1).


Asunto(s)
Leprostáticos/uso terapéutico , Lepra/tratamiento farmacológico , Mycobacterium leprae , Animales , Proteínas Bacterianas/genética , Simulación por Computador , Diseño de Fármacos , Ontología de Genes , Humanos , Mycobacterium leprae/genética
6.
Comput Struct Biotechnol J ; 18: 3692-3704, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304465

RESUMEN

Computational Saturation Mutagenesis is an in-silico approach that employs systematic mutagenesis of each amino acid residue in the protein to all other amino acid types, and predicts changes in thermodynamic stability and affinity to the other subunits/protein counterparts, ligands and nucleic acid molecules. The data thus generated are useful in understanding the functional consequences of mutations in antimicrobial resistance phenotypes. In this study, we applied computational saturation mutagenesis to three important drug-targets in Mycobacterium leprae (M. leprae) for the drugs dapsone, rifampin and ofloxacin namely Dihydropteroate Synthase (DHPS), RNA Polymerase (RNAP) and DNA Gyrase (GYR), respectively. M. leprae causes leprosy and is an obligate intracellular bacillus with limited protein structural information associating mutations with phenotypic resistance outcomes in leprosy. Experimentally solved structures of DHPS, RNAP and GYR of M. leprae are not available in the Protein Data Bank, therefore, we modelled the structures of these proteins using template-based comparative modelling and introduced systematic mutations in each model generating 80,902 mutations and mutant structures for all the three proteins. Impacts of mutations on stability and protein-subunit, protein-ligand and protein-nucleic acid affinities were computed using various in-house developed and other published protein stability and affinity prediction software. A consensus impact was estimated for each mutation using qualitative scoring metrics for physicochemical properties and by a categorical grouping of stability and affinity predictions. We developed a web database named HARP (a database of Hansen's Disease Antimicrobial Resistance Profiles), which is accessible at the URL - https://harp-leprosy.org and provides the details to each of these predictions.

7.
Front Genet ; 11: 965, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101362

RESUMEN

Tuberculosis (TB) and leprosy are mycobacterial infections caused by Mycobacterium tuberculosis and Mycobacterium leprae respectively. These diseases continue to be endemic in developing countries where the cost of new medicines presents major challenges. The situation is further exacerbated by the emergence of resistance to many front-line antibiotics. A priority now is to design new antimycobacterials that are not only effective in combatting the diseases but are also less likely to give rise to resistance. In both these respects understanding the structure of drug targets in M. tuberculosis and M. leprae is crucial. In this review we describe structure-guided approaches to understanding the impacts of mutations that give rise to antimycobacterial resistance and the use of this information in the design of new medicines.

8.
Sci Rep ; 10(1): 18120, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093532

RESUMEN

Rifampicin resistance is a major therapeutic challenge, particularly in tuberculosis, leprosy, P. aeruginosa and S. aureus infections, where it develops via missense mutations in gene rpoB. Previously we have highlighted that these mutations reduce protein affinities within the RNA polymerase complex, subsequently reducing nucleic acid affinity. Here, we have used these insights to develop a computational rifampicin resistance predictor capable of identifying resistant mutations even outside the well-defined rifampicin resistance determining region (RRDR), using clinical M. tuberculosis sequencing information. Our tool successfully identified up to 90.9% of M. tuberculosis rpoB variants correctly, with sensitivity of 92.2%, specificity of 83.6% and MCC of 0.69, outperforming the current gold-standard GeneXpert-MTB/RIF. We show our model can be translated to other clinically relevant organisms: M. leprae, P. aeruginosa and S. aureus, despite weak sequence identity. Our method was implemented as an interactive tool, SUSPECT-RIF (StrUctural Susceptibility PrEdiCTion for RIFampicin), freely available at https://biosig.unimelb.edu.au/suspect_rif/ .


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Aprendizaje Automático , Mutación Missense , Mycobacterium leprae/genética , Mycobacterium tuberculosis/genética , Rifampin/farmacología , Staphylococcus aureus/genética , Antituberculosos/farmacología , Proteínas Bacterianas/química , Humanos , Lepra/tratamiento farmacológico , Lepra/microbiología , Mycobacterium leprae/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
9.
Int J Infect Dis ; 96: 172-179, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32371193

RESUMEN

BACKGROUND: Human-to-human transmission of Mycobacterium leprae among household contacts of active leprosy cases is significant, and surveillance of household contacts is vital to interrupting the transmission chain for this disease. This study was conducted to identify similarities in M. leprae strains, based on genomic single nucleotide polymorphisms (SNPs), among cases and their household contacts and in multicase families in order to decipher possible associations, transmission links, various clinical conditions of index cases that enhance person-to-person transmission, and timelines for transmission patterns. METHODS: PCR for M. leprae DNA detection (amplification of the Rlep gene) and SNP subtyping of M. leprae strains was performed for 61 index cases and one of their household contacts. Additionally, we studied six families with multiple cases of leprosy, to understand timelines of infectivity and its relation to severity of the disease in the index cases. RESULTS: Index cases with lepromatous (LL) and borderline lepromatous (BL) leprosy, together with a positive bacteriological index (BI) for M. leprae, result in a higher percentage of their contacts subclinically infected with M. leprae, with odds ratios (OR) of 6.6 (95% confidence interval (CI) 1.6-27.6) for BL and LL, and 7.07 (CI 1.41-35.41) for BI-positive index cases. 75% of the case-contact pairs had a similar SNP subtype of M. leprae. The timeline of infection in multicase families revealed that contacts were infected during the BI-positive period of the index case. CONCLUSION: Using molecular methods, we determined that positivity for M. leprae DNA in contacts of index leprosy cases was attributed to clinical characteristics of leprosy in the index cases. LL and BL forms of leprosy, together with positive BI, contributed to dissemination of infection to household contacts. In conclusion, we found a relationship between SNP subtypes within index case-contact pairs. This method can help decipher the transmission patterns and identify individuals at risk of contracting leprosy.


Asunto(s)
Lepra/epidemiología , Mycobacterium leprae/genética , Adolescente , Adulto , Composición Familiar , Femenino , Humanos , Lepra/microbiología , Lepra/transmisión , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Mycobacterium leprae/clasificación , Mycobacterium leprae/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Nucleótido Simple , Adulto Joven
10.
Comput Struct Biotechnol J ; 18: 271-286, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32042379

RESUMEN

Rifampin resistance in leprosy may remain undetected due to the lack of rapid and effective diagnostic tools. A quick and reliable method is essential to determine the impacts of emerging detrimental mutations in the drug targets. The functional consequences of missense mutations in the ß-subunit of RNA polymerase (RNAP) in Mycobacterium leprae (M. leprae) contribute to phenotypic resistance to rifampin in leprosy. Here, we report in-silico saturation mutagenesis of all residues in the ß-subunit of RNAP to all other 19 amino acid types (generating 21,394 mutations for 1126 residues) and predict their impacts on overall thermodynamic stability, on interactions at subunit interfaces, and on ß-subunit-RNA and rifampin affinities (only for the rifampin binding site) using state-of-the-art structure, sequence and normal mode analysis-based methods. Mutations in the conserved residues that line the active-site cleft show largely destabilizing effects, resulting in increased relative solvent accessibility and a concomitant decrease in residue-depth (the extent to which a residue is buried in the protein structure space) of the mutant residues. The mutations at residue positions S437, G459, H451, P489, K884 and H1035 are identified as extremely detrimental as they induce highly destabilizing effects on the overall protein stability, and nucleic acid and rifampin affinities. Destabilizing effects were predicted for all the clinically/experimentally identified rifampin-resistant mutations in M. leprae indicating that this model can be used as a surveillance tool to monitor emerging detrimental mutations that destabilise RNAP-rifampin interactions and confer rifampin resistance in leprosy. AUTHOR SUMMARY: The emergence of primary and secondary drug resistance to rifampin in leprosy is a growing concern and poses a threat to the leprosy control and elimination measures globally. In the absence of an effective in-vitro system to detect and monitor phenotypic resistance to rifampin in leprosy, diagnosis mainly relies on the presence of mutations in drug resistance determining regions of the rpoB gene that encodes the ß-subunit of RNAP in M. leprae. Few labs in the world perform mouse food pad propagation of M. leprae in the presence of drugs (rifampin) to determine growth patterns and confirm resistance, however the duration of these methods lasts from 8 to 12 months making them impractical for diagnosis. Understanding molecular mechanisms of drug resistance is vital to associating mutations to clinically detected drug resistance in leprosy. Here we propose an in-silico saturation mutagenesis approach to comprehensively elucidate the structural implications of any mutations that exist or that can arise in the ß-subunit of RNAP in M. leprae. Most of the predicted mutations may not occur in M. leprae due to fitness costs but the information thus generated by this approach help decipher the impacts of mutations across the structure and conversely enable identification of stable regions in the protein that are least impacted by mutations (mutation coolspots) which can be a potential choice for small molecule binding and structure guided drug discovery.

11.
Emerg Microbes Infect ; 8(1): 109-118, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30866765

RESUMEN

Of the more than 190 distinct species of Mycobacterium genus, many are economically and clinically important pathogens of humans or animals. Among those mycobacteria that infect humans, three species namely Mycobacterium tuberculosis (causative agent of tuberculosis), Mycobacterium leprae (causative agent of leprosy) and Mycobacterium abscessus (causative agent of chronic pulmonary infections) pose concern to global public health. Although antibiotics have been successfully developed to combat each of these, the emergence of drug-resistant strains is an increasing challenge for treatment and drug discovery. Here we describe the impact of the rapid expansion of genome sequencing and genome/pathway annotations that have greatly improved the progress of structure-guided drug discovery. We focus on the applications of comparative genomics, metabolomics, evolutionary bioinformatics and structural proteomics to identify potential drug targets. The opportunities and challenges for the design of drugs for M. tuberculosis, M. leprae and M. abscessus to combat resistance are discussed.


Asunto(s)
Proteínas Bacterianas/química , Biología Computacional/métodos , Mycobacterium/genética , Análisis de Secuencia de ADN/métodos , Animales , Proteínas Bacterianas/metabolismo , Descubrimiento de Drogas , Farmacorresistencia Bacteriana , Genoma Bacteriano , Humanos , Anotación de Secuencia Molecular , Mycobacterium/metabolismo , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Conformación Proteica , Proteómica
12.
J Cell Biochem ; 119(12): 9838-9852, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30125973

RESUMEN

Leprosy (causative, Mycobacterium leprae) continues to be the persisting public health problem with stable incidence rates, owing to the emergence of dapsone resistance that being the principal drug in the ongoing multidrug therapy. Hence, to overcome the drug resistance, structural modification through medicinal chemistry was used to design newer dapsone derivative(s) (DDs), against folic acid biosynthesis pathway. The approach included theoretical modeling, molecular docking, and molecular dynamic (MD) simulation as well as binding free energy estimation for validation of newly designed seven DDs, before synthesis. Theoretical modeling, docking, and MD simulation studies were used to understand the mode of binding and efficacy of DDs against the wild-type and mutant dihydropteroate synthases (DHPS). Principal component analysis was performed to understand the conformational dynamics of DHPS-DD complexes. Furthermore, the overall stability and negative-binding free energy of DHPS-DD complexes were deciphered using Molecular Mechanics/Poisson-Boltzmann Surface Area technique. Molecular mechanics study revealed that DD3 possesses higher binding free energy than dapsone against mutant DHPS. Energetic contribution analysis portrayed that van der Waals and electrostatic energy contributes profoundly to the overall negative free energy, whereas polar solvation energy opposes the binding. Finally, DD3 was synthesized and characterized using Fourier-transform infrared spectroscopy, UV, liquid chromatography-mass spectrometry, and proton nuclear magnetic resonance techniques. This study suggested that DD3 could be further promoted as newer antileprosy agent. The principles of medicinal chemistry and bioinformatics tools help to locate effective therapeutics to minimize resources and time in current drug development modules.


Asunto(s)
Dapsona/farmacología , Dihidropteroato Sintasa/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mycobacterium leprae/enzimología , Dapsona/análogos & derivados , Dapsona/metabolismo , Dapsona/uso terapéutico , Dihidropteroato Sintasa/genética , Dihidropteroato Sintasa/metabolismo , Quimioterapia Combinada , Leprostáticos/farmacología , Leprostáticos/uso terapéutico , Mutación , Mycobacterium leprae/efectos de los fármacos , Unión Proteica , Conformación Proteica
13.
Sci Rep ; 8(1): 8250, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29789675

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

14.
Sci Rep ; 8(1): 5016, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29567948

RESUMEN

The rpoB gene encodes the ß subunit of RNA polymerase holoenzyme in Mycobacterium leprae (M. leprae). Missense mutations in the rpoB gene were identified as etiological factors for rifampin resistance in leprosy. In the present study, we identified mutations corresponding to rifampin resistance in relapsed leprosy cases from three hospitals in southern India which treat leprosy patients. DNA was extracted from skin biopsies of 35 relapse/multidrug therapy non-respondent leprosy cases, and PCR was performed to amplify the 276 bp rifampin resistance-determining region of the rpoB gene. PCR products were sequenced, and mutations were identified in four out of the 35 cases at codon positions D441Y, D441V, S437L and H476R. The structural and functional effects of these mutations were assessed in the context of three-dimensional comparative models of wild-type and mutant M. leprae RNA polymerase holoenzyme (RNAP), based on the recently solved crystal structures of RNAP of Mycobacterium tuberculosis, containing a synthetic nucleic acid scaffold and rifampin. The resistance mutations were observed to alter the hydrogen-bonding and hydrophobic interactions of rifampin and the 5' ribonucleotide of the growing RNA transcript. This study demonstrates that rifampin-resistant strains of M. leprae among leprosy patients in southern India are likely to arise from mutations that affect the drug-binding site and stability of RNAP.


Asunto(s)
Proteínas Bacterianas/genética , ARN Polimerasas Dirigidas por ADN/genética , Farmacorresistencia Bacteriana/genética , Leprostáticos/farmacología , Lepra/tratamiento farmacológico , Mycobacterium leprae/genética , Rifampin/farmacología , Adolescente , Adulto , ADN Bacteriano/genética , Femenino , Humanos , India , Leprostáticos/uso terapéutico , Lepra/microbiología , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mutación , Mycobacterium leprae/efectos de los fármacos , Mycobacterium leprae/aislamiento & purificación , Unión Proteica/genética , Estabilidad Proteica/efectos de los fármacos , Recurrencia , Rifampin/uso terapéutico , Análisis de Secuencia de ADN , Relación Estructura-Actividad , Resultado del Tratamiento , Adulto Joven
15.
Int J Mycobacteriol ; 6(4): 365-378, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29171451

RESUMEN

BACKGROUND: Survival of Mycobacterium leprae, the causative bacteria for leprosy, in the human host is dependent to an extent on the ways in which its genome integrity is retained. DNA repair mechanisms protect bacterial DNA from damage induced by various stress factors. The current study is aimed at understanding the sequence and functional annotation of DNA repair genes in M. leprae. METHODS: T he genome of M. leprae was annotated using sequence alignment tools to identify DNA repair genes that have homologs in Mycobacterium tuberculosis and Escherichia coli. A set of 96 genes known to be involved in DNA repair mechanisms in E. coli and Mycobacteriaceae were chosen as a reference. Among these, 61 were identified in M. leprae based on sequence similarity and domain architecture. The 61 were classified into 36 characterized gene products (59%), 11 hypothetical proteins (18%), and 14 pseudogenes (23%). All these genes have homologs in M. tuberculosis and 49 (80.32%) in E. coli. A set of 12 genes which are absent in E. coli were present in M. leprae and in Mycobacteriaceae. These 61 genes were further investigated for their expression profiles in the whole transcriptome microarray data of M. leprae which was obtained from the signal intensities of 60bp probes, tiling the entire genome with 10bp overlaps. RESULTS: It was noted that transcripts corresponding to all the 61 genes were identified in the transcriptome data with varying expression levels ranging from 0.18 to 2.47 fold (normalized with 16SrRNA). The mRNA expression levels of a representative set of seven genes ( four annotated and three hypothetical protein coding genes) were analyzed using quantitative Polymerase Chain Reaction (qPCR) assays with RNA extracted from skin biopsies of 10 newly diagnosed, untreated leprosy cases. It was noted that RNA expression levels were higher for genes involved in homologous recombination whereas the genes with a low level of expression are involved in the direct repair pathway. CONCLUSION: This study provided preliminary information on the potential DNA repair pathways that are extant in M. leprae and the associated genes.


Asunto(s)
Reparación del ADN/genética , Lepra/microbiología , Mycobacterium leprae/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Escherichia coli/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Humanos , Lepra/genética , Lepra/patología , Mycobacterium tuberculosis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Alineación de Secuencia , Homología de Secuencia
16.
PLoS Negl Trop Dis ; 11(8): e0005883, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28854187

RESUMEN

Mycobacteriaceae comprises pathogenic species such as Mycobacterium tuberculosis, M. leprae and M. abscessus, as well as non-pathogenic species, for example, M. smegmatis and M. thermoresistibile. Genome comparison and annotation studies provide insights into genome evolutionary relatedness, identify unique and pathogenicity-related genes in each species, and explore new targets that could be used for developing new diagnostics and therapeutics. Here, we present a comparative analysis of ten-mycobacterial genomes with the objective of identifying similarities and differences between pathogenic and non-pathogenic species. We identified 1080 core orthologous clusters that were enriched in proteins involved in amino acid and purine/pyrimidine biosynthetic pathways, DNA-related processes (replication, transcription, recombination and repair), RNA-methylation and modification, and cell-wall polysaccharide biosynthetic pathways. For their pathogenicity and survival in the host cell, pathogenic species have gained specific sets of genes involved in repair and protection of their genomic DNA. M. leprae is of special interest owing to its smallest genome (1600 genes and ~1300 psuedogenes), yet poor genome annotation. More than 75% of the pseudogenes were found to have a functional ortholog in the other mycobacterial genomes and belong to protein families such as transferases, oxidoreductases and hydrolases.


Asunto(s)
Proteínas Bacterianas/genética , Genoma Bacteriano , Mycobacteriaceae/genética , Mycobacteriaceae/patogenicidad , Factores de Virulencia/genética
17.
Med Microbiol Immunol ; 204(2): 193-203, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25201810

RESUMEN

Presence of point mutations within the drug resistance determining regions of Mycobacterium leprae (M. leprae) genome confers molecular basis of drug resistance to dapsone, rifampin and ofloxacin in leprosy. This study is focused on the identification of mutations within the rpoB gene region of M. leprae that are specific for rifampin interaction, and further in silico analysis was carried out to determine the variations in the interactions. DNA and RNA were isolated from slit skin scrapings of 60 relapsed leprosy patients. PCR targeting rpoB gene region and amplicon sequencing was performed to determine point mutations. mRNA expression levels of rpoB and high-resolution melt analysis of mutants were performed using Rotor Gene Q Realtime PCR. Molecular docking was performed using LigandFit Software. Ten cases having point mutations within the rpoB gene region were identified and were clinically confirmed to be resistant to rifampin. A new mutation at codon position Gln442His has been identified. There is a 9.44-fold upregulation in the mRNA expression of rpoB gene in mutant/resistant samples when compared with the wild/sensitive samples. In silico docking analysis of rifampin with wild-type and Gln442His mutant RpoB proteins revealed a variation in the hydrogen-bonding pattern leading to a difference in the total interaction energy and conformational change at position Asp441. These preliminary downstream functional observations revealed that the presence of point mutations within the rifampin resistance determining regions of rpoB gene plays a vital role in conferring genetic and molecular basis of resistance to rifampin in leprosy.


Asunto(s)
Antibacterianos/farmacología , Lepra/epidemiología , Lepra/microbiología , Mycobacterium leprae/efectos de los fármacos , Rifampin/farmacología , Adolescente , Adulto , Anciano , Biología Computacional , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , ARN Polimerasas Dirigidas por ADN/genética , Farmacorresistencia Bacteriana , Femenino , Perfilación de la Expresión Génica , Humanos , India/epidemiología , Masculino , Persona de Mediana Edad , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Mycobacterium leprae/aislamiento & purificación , Mutación Puntual , Reacción en Cadena de la Polimerasa , ARN Mensajero/análisis , Análisis de Secuencia de ADN , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA